674 research outputs found

    Observed and Physical Properties of Core-Collapse Supernovae

    Get PDF
    I use photometry and spectroscopy data for 24 Type II plateau supernovae to examine their observed and physical properties. This dataset shows that these objects encompass a wide range of ~5 mag in their plateau luminosities, their expansion velocities vary by x5, and the nickel masses produced in these explosions go from 0.0016 to 0.26 Mo. From a subset of 16 objects I find that the explosion energies vary between 0.6x and 5.5x10^51 ergs, the ejected masses encompass the range 14-56 Mo, and the progenitors' radii go from 80 to 600 Ro. Despite this great diversity several regularities emerge, which reveal that there is a continuum in the properties of these objects from the faint, low-energy, nickel-poor SNe 1997D and 1999br, to the bright, high-energy, nickel-rich SN 1992am. This study provides evidence that more massive progenitors produce more energetic explosions, thus suggesting that the outcome of the core collapse is somewhat determined by the envelope mass. I find also that supernovae with greater energies produce more nickel. Similar relationships appear to hold for Type Ib/c supernovae, which suggests that both Type II and Type Ib/c supernovae share the same core physics. When the whole sample of core collapse objects is considered, there is a continous distribution of energies below 8x10^51 ergs. Far above in energy scale and nickel production lies the extreme hypernova 1998bw, the only supernova firmly associated to a GRB.Comment: 25 pages, 7 figures, accepted for Part 1 of Astrophysical Journa

    Crystal structure and oxygen content of the double perovskites GdBaCo 2-xFexO6-δ

    Full text link
    The iron solubility limit, x, in GdBaCo2-xFexO 6-δ determined by means of X-ray diffraction was found to be close to 0.65 in air. The crystal structure changes of the double perovskites GdBaCo2-xFexO6-δ (x=0-0.6) were studied by means of in situ X-ray diffraction in temperature range from 25 to 900 °C in air. The oxygen content, 6-δ, was determined for these double perovskites in air as a function of temperature by means of thermogravimetric technique in range 25≤T, °C≤ 1100. The Pmmm-P4/mmm structure transition was found to occur in GdBaCo2-xFexO 6-δ (0≤x≤0.4) with increasing temperature. This transition is observed at the same temperature for the compositions with 0≤x≤0.1 while the transition temperature reaches maximum for x=0.2 and that decreases linearly with further iron increase. The double perovskite GdBaCo1.4Fe0.6O6-δ was shown to have the tetragonal P4/mmm structure at room temperature. The P4/mmm-Pmmm structure transition occurs at temperature as low as 170 °C for this double perovskite while reverse one is already observed at 290 °C in air. The Pmmm-P4/mmm structure transition was found to be strongly related to the oxygen content for the undoped and slightly doped (x≤0.2) double perovskites while there is no such relation for the double perovskites enriched by iron (x≥0.2). © 2012 Elsevier Inc. All rights reserved

    Investigation of GdBaCo2-xFexO6-δ (x = 0, 0.2) - Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells

    Full text link
    The double perovskites GdBaCo2-xFexO 6-δ (x = 0, 0.2) and composites (100 - y) GdBaCo 2-xFexO6-δ (x = 0, 0.2) - y Ce 0.8Sm0.2O2 (y = 10-50 wt.%) were investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Chemical compatibility of GdBaCo2-xFexO 6-δ (x = 0, 0.2) with solid electrolyte Ce0.8Sm 0.2O2, thermal expansion, DC conductivity and electrochemical performance of (100 - y) GdBaCo2-xFe xO6-δ (x = 0, 0.2) - y Ce0.8Sm 0.2O2 (y = 10-50 wt.%) were studied. Partial substitution of Fe for Co was shown to lead to decrease of double perovskite GdBaCo 2-xFexO6-δ reactivity with the solid electrolyte Ce0.8Sm0.2O2. Polarization resistance of cathodes studied was found to depend significantly on firing temperature. Variation of solid electrolyte content in (100 - y) GdBaCo 2-xFexO6-δ (x = 0, 0.2) - y Ce 0.8Sm0.2O2 (y = 10-50 wt.%) composites was shown to allow to optimize their electrochemical performance. Cathode materials of 80 wt.% GdBaCo2O6-δ - 20 wt.% Ce 0.8Sm0.2O2 and 65 wt.% GdBaCo 1.8Fe0.2O6-δ - 35 wt.% Ce 0.8Sm0.2O2 were found to have the lowest polarization resistances and reasonable values of thermal expansion coefficient (TEC) and, therefore, can be considered as promising cathode materials for IT-SOFCs. © 2013 Elsevier B.V. All rights reserved

    Optical Spectroscopy of Type Ib/c Supernovae

    Get PDF
    We present 84 spectra of Type Ib/c and Type IIb supernovae (SNe), describing the individual SNe in detail. The relative depths of the helium absorption lines in the spectra of the SNe Ib appear to provide a measurement of the temporal evolution of the SN, with He I 5876 and He I 7065 growing in strength relative to He I 6678 over time. Light curves for three of the SNe Ib provide a sequence for correlating the helium-line strengths. We find that some SNe Ic show evidence for weak helium absorption, but most do not. Aside from the presence or absence of the helium lines, there are other spectroscopic differences between SNe Ib and SNe Ic. On average, the O I 7774 line is stronger in SNe Ic than in SNe Ib. In addition, the SNe Ic have distinctly broader emission lines at late times, indicating either a consistently larger explosion energy and/or lower envelope mass for SNe Ic than for SNe Ib. While SNe Ib appear to be basically homogeneous, the SNe Ic are quite heterogeneous in their spectroscopic characteristics. Three SNe Ic that may have been associated with gamma-ray bursts are also discussed; two of these have clearly peculiar spectra, while the third seems fairly typical.Comment: Accepted for publication in the March issue of AJ. 75 pages, 35 figures, 6 tables included as figures, AASTeX V5.

    Metal-to-insulator crossover and pseudogap in single-layer compound Bi2+x_{2+x}Sr2x_{2-x}Cu1+y_{1+y}O6+δ_{6+\delta} single crystals in high magnetic fields

    Full text link
    The in-plane ρab(H)\rho_{ab}(H) and the out-of-plane ρc(H)\rho_c(H) magneto-transport in magnetic fields up to 28 T has been investigated in a series of high quality, single crystal, hole-doped La-free Bi2201 cuprates for a wide doping range and over a wide range of temperatures down to 40 mK. With decreasing hole concentration going from the overdoped (p=0.2) to the underdoped (p=0.12) regimes, a crossover from a metallic to and insulating behavior of ρab(T)\rho_{ab}(T) is observed in the low temperature normal state, resulting in a disorder induced metal insulator transition. In the zero temperature limit, the normal state ratio ρc(H)/ρab(H)\rho_c(H)/\rho_{ab}(H) of the heavily underdoped samples in pure Bi2201 shows an anisotropic 3D behavior, in striking contrast with that observed in La-doped Bi2201 and LSCO systems. Our data strongly support that that the negative out-of-plane magnetoresistance is largely governed by interlayer conduction of quasiparticles in the superconducting state, accompanied by a small contribution of normal state transport associated with the field dependent pseudogap. Both in the optimal and overdoped regimes, the semiconducting behavior of ρc(H)\rho_c(H) persists even for magnetic fields above the pseudogap closing field HpgH_{pg}. The method suggested by Shibauchi \textit{et al.} (Phys. Rev. Lett. \textbf{86}, 5763, (2001)) for evaluating HpgH_{pg} is unsuccessful for both under- and overdoped Bi2201 samples. Our findings suggest that the normal state pseudogap is not always a precursor of superconductivity.Comment: 11 pages, 8 figures, published in PRB Nov 200

    SiFTO: An Empirical Method for Fitting SNe Ia Light Curves

    Full text link
    We present SiFTO, a new empirical method for modeling type Ia supernovae (SNe Ia) light curves by manipulating a spectral template. We make use of high-redshift SN observations when training the model, allowing us to extend it bluer than rest frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree.Comment: Modified to better match published version in Ap

    Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models

    Full text link
    We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.Comment: 29 pages, 14 figures, ApJ, in pres

    Transverse optical plasmons in layered superconductors

    Full text link
    We discuss the possible existance of transverse optical plasma modes in superlattices consisting of Josephson coupled superconducting layers. These modes appear as resonances in the current-current correlation function, as opposed to the usual plasmons which are poles in the density-density channel. We consider both bilayer superlattices, and single layer lattices with a spread of interlayer Josephson couplings. We show that our model is in quantitative agreement with the recent experimental observation by a number of groups of a peak at the Josephson plasma frequency in the optical conductivity of La1.85_{1.85}Sr0.15_{0.15}CuO4_4Comment: Proceedings of LT21, in press, 4 pages, Latex with LTpaper.sty and epsfig.sty, 2 postscript figure

    Oxygen content and thermodynamic stability of YBaCo2O6-δdouble perovskite

    Full text link
    The thermodynamic stability of the double perovskite YBaCo2O6-δ was studied using the coulometric titration technique and verified by measurements of the overall conductivity depending on oxygen partial pressure at a given temperature. As a result, the stability diagram of YBaCo2O6-δ was plotted. YBaCo2O6-δ was found to be thermodynamically stable in air at 850°C and higher temperatures, whereas its thermodynamic stability at 900°C is limited by the range of oxygen partial pressures -3.56 ≤ log(pO2/atm) ≤ -0.14. Oxygen content in YBaCo2O6-δ slightly decreases at 900°C from 5.035 at log(pO2/atm) = -0.14 to 4.989 in the atmosphere with log(pO2/atm) = -3.565 indicating a crucial role which variation of Co+3/Co+2 ratio plays in its stability. YBaCo2O6-δ decomposes into the mixture of YCoO3 and BaCoO3-z at the high pO2 stability limit, whereas YBaCo4O7, BaCo1-xYxO3-γ, and Y2O3 were identified as the products of its decomposition at the low pO2 one. Copyright © 2018 Anton L. Sednev et al

    The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae

    Full text link
    We develop a method for estimating the host galaxy dust extinction for type Ia supernovae based on an observational coincidence first noted by Lira (1995), who found that the B-V evolution during the period from 30-90 days after V maximum is remarkably similar for all events, regardless of light curve shape. This fact is used to calibrate the dependence of the B(max)-V(max) and V(max)-I(max) colors on the light curve decline rate parameter delta-m15, which can, in turn, be used to separately estimate the host galaxy extinction. Using these methods to eliminate the effects of reddening, we reexamine the functional form of the decline rate versus luminosity relationship and provide an updated estimate of the Hubble constant of Ho = 63.3 +- 2.2(internal) +- 3.5(external) km/s/Mpc.Comment: 32 pages, 10 figures, AJ 1999 in pres
    corecore